
Introduction Transient loops Link shut Node shut Conclusion

From link shut to node shut:
Graceful operations in link-state routing networks

François CLAD, Pascal MERINDOL and Jean-Jacques PANSIOT

Team presentation
December 17th, 2012

1 / 23



Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

2 / 23



Introduction Transient loops Link shut Node shut Conclusion

Some context

Routing in providers’ networks
Intra-domain routing
Link-state protocols : OSPF, IS-IS

Frequent topological changes
Link or node addition, withdrawal or modification
. . . and as many convergence periods

3 / 23



Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

4 / 23



Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

d

Routes towards d :

a

b

A

B

A << B

5 / 23



Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

A change occur on the network.
Path through b more interesting, even for a.

d

Routes towards d :

b

A′

B′

Old : A << B
New : A′ >> B′

a

5 / 23



Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

A change occur on the network.
Path through b more interesting, even for a.

If a updates first and starts sending data
towards d through b, while b still uses a.

d

Routes towards d :

b

A′

B′

Old : A << B
New : A′ >> B′

a

5 / 23



Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

A change occur on the network.
Path through b more interesting, even for a.

If a updates first and starts sending data
towards d through b, while b still uses a.

A transient loop appears on link (a,b).

d

Routes towards d :

b

A′

B′

Old : A << B
New : A′ >> B′

a

LOOP !

5 / 23



Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

A change occur on the network.
Path through b more interesting, even for a.

If a updates first and starts sending data
towards d through b, while b still uses a.

A transient loop appears on link (a,b).
✄ Increased latency
✄ Packet losses

d

Routes towards d :

b

A′

B′

Old : A << B
New : A′ >> B′

a

LOOP !

5 / 23



Introduction Transient loops Link shut Node shut Conclusion

How to detect them ?

For a given destination (e.g. d) :
1 Compute routes before and after the change.

Before

a

b

d

After

a

b

d

6 / 23



Introduction Transient loops Link shut Node shut Conclusion

How to detect them ?

For a given destination (e.g. d) :
1 Compute routes before and after the change.
2 Merge these two directed acyclic graphs (DAG).

Before

a

b

d

Merging

a

b

d

After

a

b

d

6 / 23



Introduction Transient loops Link shut Node shut Conclusion

How to detect them ?

For a given destination (e.g. d) :
1 Compute routes before and after the change.
2 Merge these two directed acyclic graphs (DAG).
3 Perform a cycle detection on the resulting graph.

Before

a

b

d

Merging

a

b

dLOOP !

After

a

b

d

6 / 23



Introduction Transient loops Link shut Node shut Conclusion

How to prevent them ?

Force the routers to update in the right order.

Initially, both a and b reach d through a.

d

a

b

A

B

A + w(b,a) < B

P. Francois and O. Bonaventure, “Avoiding Transient Loops During the
Convergence of Link-State Routing Protocols”, IEEE/ACM Transactions on
Networking, volume 15, pages 1280-1292, December 2007.

7 / 23



Introduction Transient loops Link shut Node shut Conclusion

How to prevent them ?

Force the routers to update in the right order.

Initially, both a and b reach d through a.

The same change occurs...
d

A′

B′

Old : A + w(b,a) < B
New : A′ > w(a,b) + B′

b

a

P. Francois and O. Bonaventure, “Avoiding Transient Loops During the
Convergence of Link-State Routing Protocols”, IEEE/ACM Transactions on
Networking, volume 15, pages 1280-1292, December 2007.

7 / 23



Introduction Transient loops Link shut Node shut Conclusion

How to prevent them ?

Force the routers to update in the right order.

Initially, both a and b reach d through a.

The same change occurs...

... yet this time b updates first...
d

A′

B′

Old : A + w(b,a) < B
New : A′ > w(a,b) + B′

b

a

P. Francois and O. Bonaventure, “Avoiding Transient Loops During the
Convergence of Link-State Routing Protocols”, IEEE/ACM Transactions on
Networking, volume 15, pages 1280-1292, December 2007.

7 / 23



Introduction Transient loops Link shut Node shut Conclusion

How to prevent them ?

Force the routers to update in the right order.

Initially, both a and b reach d through a.

The same change occurs...

... yet this time b updates first...

... then a, and no loop appears.

d

A′

B′

Old : A + w(b,a) < B
New : A′ > w(a,b) + B′

b

a

P. Francois and O. Bonaventure, “Avoiding Transient Loops During the
Convergence of Link-State Routing Protocols”, IEEE/ACM Transactions on
Networking, volume 15, pages 1280-1292, December 2007.

7 / 23



Introduction Transient loops Link shut Node shut Conclusion

How to prevent them ?

Force the routers to update in the right order.

Initially, both a and b reach d through a.

The same change occurs...

... yet this time b updates first...

... then a, and no loop appears.

One goal, several approaches.

d

A′

B′

Old : A + w(b,a) < B
New : A′ > w(a,b) + B′

b

a

P. Francois and O. Bonaventure, “Avoiding Transient Loops During the
Convergence of Link-State Routing Protocols”, IEEE/ACM Transactions on
Networking, volume 15, pages 1280-1292, December 2007.

7 / 23



Introduction Transient loops Link shut Node shut Conclusion

Progressive update

Basic idea

Split up the change into a sequence of smaller
modifications, such that each one is loop free.

Objectives

Compute a sequence of intermediate updates, such that :
No transient loop may appear during the transition between two
consecutive updates.

Each intermediate update prevents at least one cycle.

Challenge

Minimal operational impact (sequences of minimal size)

8 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

a

b

c

d

3

5

2 9

2

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

Initially, a, b and c reach d through node a.

a

b

c

d

3

5

2 9

2

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50. . .

a

b

c

d

3

5

2 9

✁2 50

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead . . .

a

b

c

d

3

5

2 9

✁2 50

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

a

b

c

d

3

5

2 9

✁2 50
LOOP !

LOOP !

LOOP !

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With progressive increments :

d

3

5

2 9

2a

b

c

2 50

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With progressive increments :

Node c could update first
d

3

5

2 9

✁2 5a

b

c

2 505

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With progressive increments :

Node c could update first

Then b
d

3

5

2 9

✁2 ✁5 9a

b

c

2 505 9

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With progressive increments :

Node c could update first

Then b and a.
d

3

5

2 9

✁2 ✁5 ✁9 15a

b

c

2 505 9 15

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

Illustration : path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With progressive increments :

Node c could update first

Then b and a.

So that the transition to 50 will
be loop free.

d

3

5

2 9

✁2 ✁5 ✁9✚✚15 50a

b

c

2 505 9 15

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

10 / 23



Introduction Transient loops Link shut Node shut Conclusion

Case of a link shut (withdrawal)1

1 Compute a list of affected destinations
2 Compute new paths toward these nodes (after removal)
3 Extract destination oriented metric sequences
4 Merge and reduce them to build a global sequence

1. The same algorithms may be used for any other kind of modification on
a single link (addition, weight increment or decrement).

11 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ∆ values

Current paths

a

b

c

d

3

5

2 9

2

New paths

a

b

c

d

3

5

2 9

12 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ∆ values

Current paths

a

b

c

d

3

5

2 9

2

2

5

7

New paths

a

b

c

d

3

5

2 9

14

11

9

Retrieve distances from each node to the destination

12 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ∆ values

Current paths

a

b

c

d

3

5

2 9

2

2

5

7

New paths

a

b

c

d

3

5

2 9

14

11

9

Retrieve distances from each node to the destination

Compute the difference (∆) between new and old distances
∆(a) = 14 − 2 = 12
∆(b) = 11 − 5 = 6
∆(c) = 9 − 7 = 2

12 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ∆ values

Current paths

a

b

c

d

3

5

2 9

2

2

5

7

New paths

a

b

c

d

3

5

2 9

14

11

9

Retrieve distances from each node to the destination

Compute the difference (∆) between new and old distances
∆(a) = 14 − 2 = 12
∆(b) = 11 − 5 = 6
∆(c) = 9 − 7 = 2

✄ Incrementing the weight of link (a,d) by one of these ∆ values
would put the corresponding node in an ECMP transient state.

12 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ECMP state

While in ECMP state, a node uses both its
old and new routes towards the destination.

d

3

5

2 9

a

b

c

2

∆ sequence : {2,6,12}

13 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ECMP state

While in ECMP state, a node uses both its
old and new routes towards the destination.

d

3

5

2 9

a

b

c

4

7

9

2 + 2

∆ sequence : {2,6,12}
✄ First values such that the nodes use their new path(s)

13 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ECMP state

While in ECMP state, a node uses both its
old and new routes towards the destination.

d

3

5

2 9

a

b

c

8

11

9

2 + 6

∆ sequence : {2,6,12}
✄ First values such that the nodes use their new path(s)

13 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ECMP state

While in ECMP state, a node uses both its
old and new routes towards the destination.

d

3

5

2 9

a

b

c

14

11

9

2 + 12

∆ sequence : {2,6,12}
✄ First values such that the nodes use their new path(s)

13 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ECMP state

While in ECMP state, a node uses both its
old and new routes towards the destination.

d

3

5

2 9

a

b

c

14

11

9

2 + 12

∆ sequence : {2,6,12}
✄ First values such that the nodes use their new path(s)
✄ Does not prevent transient loops

13 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ECMP state

While in ECMP state, a node uses both its
old and new routes towards the destination.

d

3

5

2 9

a

b

c

14

11

9

2 + 12

∆ sequence : {2,6,12}
✄ First values such that the nodes use their new path(s)
✄ Does not prevent transient loops

Increment sequence (∆+ 1) : {3,7,13}
✄ First values such that the nodes use only their new path(s)

13 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ECMP state

While in ECMP state, a node uses both its
old and new routes towards the destination.

d

3

5

2 9

a

b

c

14

11

9

2 + 12

∆ sequence : {2,6,12}
✄ First values such that the nodes use their new path(s)
✄ Does not prevent transient loops

Increment sequence (∆+ 1) : {3,7,13}
✄ First values such that the nodes use only their new path(s)

Metric sequence (∆+ 1 + w(a,d)) : {5,9,15}

13 / 23



Introduction Transient loops Link shut Node shut Conclusion

Destination oriented sequences : ECMP state

While in ECMP state, a node uses both its
old and new routes towards the destination.

d

3

5

2 9

a

b

c

14

11

9

2 + 12

∆ sequence : {2,6,12} relative to w(a,d)
✄ First values such that the nodes use their new path(s)
✄ Does not prevent transient loops

Increment sequence (∆+ 1) : {3,7,13} relative to w(a,d)
✄ First values such that the nodes use only their new path(s)

Metric sequence (∆+ 1 + w(a,d)) : {5,9,15} absolute

13 / 23



Introduction Transient loops Link shut Node shut Conclusion

Global metric sequences

d1

d2

14 / 23



Introduction Transient loops Link shut Node shut Conclusion

Global metric sequences

d1

d2

Merge

Merge all destination oriented sequences
✄ Prevent transient loops for all destinations
✄ May contain unnecessary metrics

14 / 23



Introduction Transient loops Link shut Node shut Conclusion

Global metric sequences

d1

d2

Merge

Minimize

Merge all destination oriented sequences
✄ Prevent transient loops for all destinations
✄ May contain unnecessary metrics

Sequentially walk through the global sequence and prune
as many intermediate metrics as possible.
✄ Greedy algorithm looking for possible loops at each step
✄ Ensure the minimality in terms of sequence size

14 / 23



Introduction Transient loops Link shut Node shut Conclusion

Global metric sequences

d1

d2

Merge

Minimize

Merge all destination oriented sequences
✄ Prevent transient loops for all destinations
✄ May contain unnecessary metrics

Sequentially walk through the global sequence and prune
as many intermediate metrics as possible.
✄ Greedy algorithm looking for possible loops at each step
✄ Ensure the minimality in terms of sequence size

14 / 23



Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

15 / 23



Introduction Transient loops Link shut Node shut Conclusion

Case of a node shut2

e

f a

b

c

Shut each outgoing link of the node

Increasing the weight of one link may
shift the traffic to an alternate link
✄ Flapping issues

Several link updates in a single signalisation packet (LSA)
✄ Vectorial increments

2. As for a link, the same procedure may be used for adding a node.
16 / 23



Introduction Transient loops Link shut Node shut Conclusion

Case of a node shut2

e

f a

b

c

×

Shut each outgoing link of the node

Increasing the weight of one link may
shift the traffic to an alternate link
✄ Flapping issues

Several link updates in a single signalisation packet (LSA)
✄ Vectorial increments

2. As for a link, the same procedure may be used for adding a node.
16 / 23



Introduction Transient loops Link shut Node shut Conclusion

Case of a node shut2

e

f a

b

c

×

Shut each outgoing link of the node

Increasing the weight of one link may
shift the traffic to an alternate link
✄ Flapping issues

Several link updates in a single signalisation packet (LSA)
✄ Vectorial increments

2. As for a link, the same procedure may be used for adding a node.
16 / 23



Introduction Transient loops Link shut Node shut Conclusion

A first approach : link-by-link

e

f a

b

c

Proof of existence

Shut outgoing links one-by-one using the link shut approach

Different orders may produce sequences of different sizes

+ One algorithm for link and node shut

− Multiple traffic shifts (flapping), far from being minimal

17 / 23



Introduction Transient loops Link shut Node shut Conclusion

A first approach : link-by-link

e

f a

b

c

Proof of existence

Shut outgoing links one-by-one using the link shut approach

Different orders may produce sequences of different sizes

+ One algorithm for link and node shut

− Multiple traffic shifts (flapping), far from being minimal

17 / 23



Introduction Transient loops Link shut Node shut Conclusion

A first approach : link-by-link

e

f a

b

c

Proof of existence

Shut outgoing links one-by-one using the link shut approach

Different orders may produce sequences of different sizes

+ One algorithm for link and node shut

− Multiple traffic shifts (flapping), far from being minimal

17 / 23



Introduction Transient loops Link shut Node shut Conclusion

A first approach : link-by-link

e

f a

b

c

Proof of existence

Shut outgoing links one-by-one using the link shut approach

Different orders may produce sequences of different sizes

+ One algorithm for link and node shut

− Multiple traffic shifts (flapping), far from being minimal

17 / 23



Introduction Transient loops Link shut Node shut Conclusion

A first approach : link-by-link

e

f a

b

c

Proof of existence

Shut outgoing links one-by-one using the link shut approach

Different orders may produce sequences of different sizes

+ One algorithm for link and node shut

− Multiple traffic shifts (flapping), far from being minimal

17 / 23



Introduction Transient loops Link shut Node shut Conclusion

A first approach : link-by-link

e

f a

b

c

×

Proof of existence

Shut outgoing links one-by-one using the link shut approach

Different orders may produce sequences of different sizes

+ One algorithm for link and node shut

− Multiple traffic shifts (flapping), far from being minimal

17 / 23



Introduction Transient loops Link shut Node shut Conclusion

A smarter way : uniform increments

e

f a

c

b

Uniform increments on outgoing links

Same algorithm as for the link shut

+ Good computing performances, no traffic shift

− Still not minimal

18 / 23



Introduction Transient loops Link shut Node shut Conclusion

A smarter way : uniform increments

e

f a

c

b′ b0

Uniform increments on outgoing links

Same algorithm as for the link shut

+ Good computing performances, no traffic shift

− Still not minimal

18 / 23



Introduction Transient loops Link shut Node shut Conclusion

A smarter way : uniform increments

e

f a

c

b′ b0

Uniform increments on outgoing links

Same algorithm as for the link shut

+ Good computing performances, no traffic shift

− Still not minimal

18 / 23



Introduction Transient loops Link shut Node shut Conclusion

A smarter way : uniform increments

e

f a

c

b′ b0 ×

Uniform increments on outgoing links

Same algorithm as for the link shut

+ Good computing performances, no traffic shift

− Still not minimal

18 / 23



Introduction Transient loops Link shut Node shut Conclusion

Towards minimality : Greedy Backward Algorithm

c1

c2

c3

c4

c5

c6

c7 c8

c9

Enumerate every transient cycle

19 / 23



Introduction Transient loops Link shut Node shut Conclusion

Towards minimality : Greedy Backward Algorithm

c1

c2

c3

c4

c5

c6

c7 c8

c9

⇒
c5

c8

c4

c1

c7

c3

c2

c9

c6

Enumerate every transient cycle

Order these cycles in a dependency DAG (partial order)

19 / 23



Introduction Transient loops Link shut Node shut Conclusion

Towards minimality : Greedy Backward Algorithm

c1

c2

c3

c4

c5

c6

c7 c8

c9

⇒
c5

c8

c4

c1

c7

c3

c2

c9

c6

Enumerate every transient cycle

Order these cycles in a dependency DAG (partial order)

Build intermediate vector increments

19 / 23



Introduction Transient loops Link shut Node shut Conclusion

Towards minimality : Greedy Backward Algorithm

c1

c2

c3

c4

c5

c6

c7 c8

c9

⇒
c5

c8

c4

c1

c7

c3

c2

c9

c6

Enumerate every transient cycle

Order these cycles in a dependency DAG (partial order)

Build intermediate vector increments

19 / 23



Introduction Transient loops Link shut Node shut Conclusion

Towards minimality : Greedy Backward Algorithm

c1

c2

c3

c4

c5

c6

c7 c8

c9

⇒
c5

c8

c4

c1

c7

c3

c2

c9

c6

Enumerate every transient cycle

Order these cycles in a dependency DAG (partial order)

Build intermediate vector increments

19 / 23



Introduction Transient loops Link shut Node shut Conclusion

Towards minimality : Greedy Backward Algorithm

c1

c2

c3

c4

c5

c6

c7 c8

c9

⇒
c5

c8

c4

c1

c7

c3

c2

c9

c6

Enumerate every transient cycle

Order these cycles in a dependency DAG (partial order)

Build intermediate vector increments

+ Minimal sequence size

− Path flapping, high computing times

19 / 23



Introduction Transient loops Link shut Node shut Conclusion

Comparative evaluation

103 104 105 106

Computing time (ms)

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 d
is
tr
ib
u
ti
o
n

Computing time distribution

GBA
Uniform
Link by link

0 20 40 60 80 100 120 140 160 180
Sequence length

0.90

0.92

0.94

0.96

0.98

1.00

D
is
tr
ib
u
ti
o
n
 (
C
D
F)

Distribution of the sequence lengths

Worst link
GBA
Uniform
Link-by-link

Close results for most nodes

Differences appear on worst cases

20 / 23



Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

21 / 23



Introduction Transient loops Link shut Node shut Conclusion

Conclusion

X Link shut
X Minimal solution
X Low time complexity

Node shut – work in progress
X Minimal solution
✄ Improve time performances
✄ Avoid flapping

22 / 23



Thank you for your attention.

23 / 23


	Introduction
	Transient loops
	Link shut
	Node shut
	Conclusion
	Annexe

