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Some context

Routing in providers’ networks
Intra-domain routing
Link-state protocols : OSPF, IS-IS

Frequent topological changes
Link or node addition, withdrawal or modification
. . . and as many convergence periods
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How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

d

Routes towards d :

a

b

A

B

A << B

5 / 23



Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

A change occur on the network.
Path through b more interesting, even for a.

d

Routes towards d :

b

A′

B′

Old : A << B
New : A′ >> B′

a

5 / 23



Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

A change occur on the network.
Path through b more interesting, even for a.

If a updates first and starts sending data
towards d through b, while b still uses a.

d

Routes towards d :

b

A′

B′

Old : A << B
New : A′ >> B′

a

5 / 23



Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

A change occur on the network.
Path through b more interesting, even for a.

If a updates first and starts sending data
towards d through b, while b still uses a.

A transient loop appears on link (a,b).

d

Routes towards d :

b

A′

B′

Old : A << B
New : A′ >> B′

a

LOOP !

5 / 23



Introduction Transient loops Link shut Node shut Conclusion

How do transient loops appear ?

Routers’ update order is not controlled.
It depends on LSA flooding and RIB/FIB update times.

Initially, both a and b reach d through a.

A change occur on the network.
Path through b more interesting, even for a.

If a updates first and starts sending data
towards d through b, while b still uses a.

A transient loop appears on link (a,b).
✄ Increased latency
✄ Packet losses
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How to detect them ?

For a given destination (e.g. d) :
1 Compute routes before and after the change.

Before
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d
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How to detect them ?

For a given destination (e.g. d) :
1 Compute routes before and after the change.
2 Merge these two directed acyclic graphs (DAG).
3 Perform a cycle detection on the resulting graph.
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How to prevent them ?

Force the routers to update in the right order.

Initially, both a and b reach d through a.

d

a

b

A

B

A + w(b,a) < B

P. Francois and O. Bonaventure, “Avoiding Transient Loops During the
Convergence of Link-State Routing Protocols”, IEEE/ACM Transactions on
Networking, volume 15, pages 1280-1292, December 2007.
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How to prevent them ?

Force the routers to update in the right order.

Initially, both a and b reach d through a.

The same change occurs...

... yet this time b updates first...

... then a, and no loop appears.

One goal, several approaches.
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Progressive update

Basic idea

Split up the change into a sequence of smaller
modifications, such that each one is loop free.

Objectives

Compute a sequence of intermediate updates, such that :
No transient loop may appear during the transition between two
consecutive updates.

Each intermediate update prevents at least one cycle.

Challenge

Minimal operational impact (sequences of minimal size)
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Illustration : path increment sequence
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Illustration : path increment sequence

Initially, a, b and c reach d through node a.

If a change occur on path P(a, d) increasing its cost to 50, all three
nodes will go through c instead and transient loops may appear.

With progressive increments :

Node c could update first

Then b and a.

So that the transition to 50 will
be loop free.

d

3

5

2 9

✁2 ✁5 ✁9✚✚15 50a

b

c

2 505 9 15

9 / 23



Introduction Transient loops Link shut Node shut Conclusion

1 Introduction

2 Transient loops

3 Link shut

4 Node shut

5 Conclusion

10 / 23



Introduction Transient loops Link shut Node shut Conclusion

Case of a link shut (withdrawal)1

1 Compute a list of affected destinations
2 Compute new paths toward these nodes (after removal)
3 Extract destination oriented metric sequences
4 Merge and reduce them to build a global sequence

1. The same algorithms may be used for any other kind of modification on
a single link (addition, weight increment or decrement).
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Destination oriented sequences : ∆ values
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Destination oriented sequences : ∆ values
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Retrieve distances from each node to the destination

Compute the difference (∆) between new and old distances
∆(a) = 14 − 2 = 12
∆(b) = 11 − 5 = 6
∆(c) = 9 − 7 = 2

✄ Incrementing the weight of link (a,d) by one of these ∆ values
would put the corresponding node in an ECMP transient state.
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Destination oriented sequences : ECMP state

While in ECMP state, a node uses both its
old and new routes towards the destination.

d
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∆ sequence : {2,6,12}
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While in ECMP state, a node uses both its
old and new routes towards the destination.
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∆ sequence : {2,6,12} relative to w(a,d)
✄ First values such that the nodes use their new path(s)
✄ Does not prevent transient loops

Increment sequence (∆+ 1) : {3,7,13} relative to w(a,d)
✄ First values such that the nodes use only their new path(s)
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Case of a node shut2

e

f a

b

c

Shut each outgoing link of the node

Increasing the weight of one link may
shift the traffic to an alternate link
✄ Flapping issues

Several link updates in a single signalisation packet (LSA)
✄ Vectorial increments

2. As for a link, the same procedure may be used for adding a node.
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A first approach : link-by-link
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Proof of existence

Shut outgoing links one-by-one using the link shut approach

Different orders may produce sequences of different sizes

+ One algorithm for link and node shut

− Multiple traffic shifts (flapping), far from being minimal
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A smarter way : uniform increments
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f a
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Uniform increments on outgoing links

Same algorithm as for the link shut

+ Good computing performances, no traffic shift

− Still not minimal
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Towards minimality : Greedy Backward Algorithm
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Enumerate every transient cycle

Order these cycles in a dependency DAG (partial order)

Build intermediate vector increments

+ Minimal sequence size

− Path flapping, high computing times
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Comparative evaluation
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Close results for most nodes

Differences appear on worst cases
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Conclusion

X Link shut
X Minimal solution
X Low time complexity

Node shut – work in progress
X Minimal solution
✄ Improve time performances
✄ Avoid flapping
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Thank you for your attention.
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