Réseaux team

Difference between revisions of "Routing and Control"

From Réseaux team
Jump to navigation Jump to search
Line 7: Line 7:
  
  
'''Routage multicast'''
+
'''Multicast Routing'''
 
   
 
   
'''''Participants''''' : J.-J. Pansiot, D. Grad, V. Lucas, M. Hoerdt, C. Jelger
+
'''''Participating Team Members''''' : J.-J. Pansiot, D. Grad, V. Lucas, M. Hoerdt, C. Jelger
  
Le routage multicast est un domaine de compétence reconnu de notre équipe depuis plusieurs années [http://lsiit.u-strasbg.fr/Publications/2005/Pan05]. Cette opération porte maintenant principalement sur le contrôle et le passage à l’échelle du routage multicast, PIM-SM et ses variantes. Nous avons en particulier étudié avec thèse de M. Hoerdt [http://lsiit.u-strasbg.fr/Publications/2005/Hoe05a] la répartition des états de routage et développé l’architecture SSMSDP permettant d’utiliser uniquement  des arbres par source (modèle SSM à une seule source, plus robuste que les arbres partagés multi-sources du modèle ASM) tout en gardant au niveau applicatif un modèle multi-sources dynamiques. Ce travail a notamment été effectué dans le cadre du projet RNRT @irs++ et du projet européen 6net. Cette architecture a également été proposée à l’ietf. Plus récemment nous nous sommes intéressés au contrôle et à la protection du plan de signalisation de PIM-SM : contrôle des abonnements pour la gestion des ressources et protection contre les attaques DDoS. En effet le routage multicast est l’un des rares mécanismes d’Internet où les actions au niveau des utilisateurs entraîne une signalisation dans le réseau. Ceci a donné lieu (en collaboration avec B. Hilt et M. Hoerdt) à une proposition de canal de retour dans PIM-SM afin de contrôler les arbres multicast inutiles et les attaques par déni de service distribué contre le routage multicast. A l’intersection avec le thème mobilité, C. Jelger [http://lsiit.u-strasbg.fr/Publications/2004/Jel04] et T. Noël ont  étudié le problème des communications multicast avec des mobiles, notamment le traitement des sources mobiles et la reconfiguration des arbres par source.
+
Multicast routing is a recognized activity of our team since several years [http://lsiit.u-strasbg.fr/Publications/2005/Pan05]. This topic is now mainly aimed at congestion control and scalability of multicast routing, PIM-SM and its  variants. In his thesis, M. Hoerdt[http://lsiit.u-strasbg.fr/Publications/2005/Hoe05a] studied routing state repartition and proposed a new architecture, SSMSDP, allowing to use only source trees (SSM model, which is more robust than shared trees of the ASM model)while  providing a dynamic multi-source model at the application layer. This work has been partly done in the framework of the RNRT @irs++ project, and the European project 6net. This architecture has also been proposed at the Ietf. More recently we have been working on the control and protection of the signaling plane of PIM-SM: Receiver join control to manage resources and mitigate Distributed Denial of Service against multicast routing. This is because multicast routing is one of a few internet mechanisms where end user actions trigger signaling inside the network. AS a result of this work (in collaboration with B. Hilt and M. Hoerdt) we have proposed a feedback channel for PIM-SM allowing to control useless multicast trees and DDoS attacks. In a work common with our mobility area, C. Jelger [http://lsiit.u-strasbg.fr/Publications/2004/Jel04] and T. Noël have studied multicast communication with mobiles, particularly the difficult case of mobile multicast sources and tree reconfiguration.
  
'''Contrôle de congestion et répartition de trafic'''
+
'''Congestion Control and Load Sharing'''
  
'''''Participants''''' : J.-J. Pansiot, S. Cateloin, D. Grad, P. Mérindol, V. Lucas
+
'''''Participating Team Members''''' : J.-J. Pansiot, S. Cateloin, D. Grad, P. Mérindol, V. Lucas
  
Ces travaux ont été initiés plus récemment,depuis le recrutement de S. Cateloin. Nous étudions (thèse de P. Mérindol, co-encadrement J.J. Pansiot et S. Cateloin) la répartition dynamique de trafic unicast sur plusieurs chemins vers une même destination. Ceci nécessite de construire un nombre suffisant de chemins alternatifs, de plus dans un modèle de routage saut par saut, le problème d’évitement des boucles devient plus ardu. Nous avons proposé des extensions de l’algorithme de Dijkstra pour trouver des chemins multiples, pas nécessairement de même coût, et un mécanisme de routage en fonction de l’interface d’entrée donnant un plus grand nombre de chemins potentiellement utilisables et sans boucles. L’objectif est de pouvoir utiliser le multiroutage à la fois pour la protection : basculer le trafic localement sur un chemin alternatif en cas de coupure, et pour le contrôle de charge : répartir localement et dynamiquement les flux sur plusieurs cheminsParallèlement, nous étudions (thèse de V. Lucas, co-encadrement J.J. Pansiot et D. Grad) des mécanismes de contrôle de congestion applicables au multicast pour de très grands groupes, donc sans canal de retour, en utilisant un codage hiérarchique. Grâce à des expérimentations sur une plateforme européenne, nous avons identifié des lacunes de propositions antérieures comme Webrc et nous étudions une nouvelle méthode basée sur un mécanisme de fenêtrage.
+
This work has started more recently with S. Cateloin recruitment. We study (P. Mérindol Ph.D. thesis under the supervision of J.J. Pansiot and S. Cateloin) unicast load sharing among several paths towards the same destination. This requires constructing sufficiently many paths, not necessarily of equal cost. Moreover in a hop by hop routing model, loop avoidance is a hard problem. We have extended Dijkstra algorithm to find multiple paths and we have defined a routing mechanism taking the incoming interface into account and producing a larger set of lop free routes. The objective is to use multipath routing both for protection: locally switch traffic to a backup link in case of fault, and load sharing: locally and dynamically distribute flows on several pathsIn his thesis V. Lucas(under the supervision J.J. Pansiot and D. Grad) is working on congestion control mechanisms for very large multicast groups, that is without receivers feedback to the source but using hierarchical layered coding. After some experimentations on a European platform we have discovered some problems with existing propositions such as webrc, and we are studying a new method based on a sliding window mechanism.
  
'''Modèles pour la simulation et l’émulation'''
+
'''Network MOdels for Simulation and Emulation'''
  
'''''Participants''''' : J.-J. Pansiot, M. Hoerdt, D. Magoni, S. Cateloin, P. Mérindol
+
'''''Participating Team Members''''' : J.-J. Pansiot, M. Hoerdt, D. Magoni, S. Cateloin, P. Mérindol
  
  
L’équipe a une certaine antériorité dans la cartographie d’Internet depuis l’étude de Pansiot et Grad sur les routes et les arbres multicast dans Internet (ACM CCR Vol 28 N 1 1998)[http://www-r2.u-strasbg.fr/~pansiot/traceroute/routes.html]. Les modèles de réseau ont une importance très grande dans notre communauté puisque beaucoup de travaux sont évalués par des simulations ou des émulations, et des modèles peu réalistes, par exemple de topologie, nuisent à la crédibilité des résultats. Nous avons donc poursuivi l’étude de la topologie d’Internet, notamment par une cartographie de la partie IPv6 basée sur des techniques de type « traceroute ». Plus récemment une étude de la topologie du Mbone a été réalisée en utilisant d’autres outils  donnant des informations plus précises sur la topologie locale et sur sa dynamique mais limitées aux routeurs multicast [http://www-r2.u-strasbg.fr/~pansiot/mrinfo/Mrinfo%20project.html]. Au-delà de la topologie proprement dite nous nous intéressons aux autres paramètres utiles suivant les types d‘évaluation (délai, bande passante, métriques d’ingénierie, matrices de trafic, ).
+
Our team has quite a long standing activity in Internet cartography since the study of Pansiot and Grad on routes and multicast trees in the Internet(ACM CCR Vol 28 N 1 1998)[http://www-r2.u-strasbg.fr/~pansiot/traceroute/routes.html]. Network models have gained a big importance in our research community since many  propositions are evaluated using simulation or emulation. In this context, unrealistic network models, for example topology models for routing, cannot give trustworthy results. We have continued studies on Internet topology including a cartography of the IPv6 enabled Internet with traceroute based techniques. Moire recently a study of the Mbone has been achieved using new tools, yielding more precise results on the local topology and its dynamics, but limited to multicast routers[http://www-r2.u-strasbg.fr/~pansiot/mrinfo/Mrinfo%20project.html]. Beyond the topology itself, we are also interested by other parameters useful for different types of evaluation (delay, bandwidth, etraffic engineering metrics, traffic matrices, ...)[[fr:Routage_et_Contrôle]]
[[fr:Routage_et_Contrôle]]
 

Revision as of 17:26, 2 July 2007

To be translated real soon now

In this area, we are mainly interested in routing and switching in the network core, and their interactions with user activities. In a simplified model of Internet operations, users do not have direct influence on routing which is basically static in the absence of faults. This simple model has more and more exceptions. For example with multicast routing, receivers joining a group create routing entries in the core of the network. Similarly with multipath load sharing, changes in flows generated at the edges of the network may yield changes in routing in core routers. The study of this type of problems has some distributed algorithms aspects as well as protocol engineering aspects. One important evaluation criterion is scalability, since core routers have to deal with many flows and a limited processing capacity. One difficulty for the validation of this kind of study is the lack of precise and realistic netwwork models. This is why our work on this area may be currently divided into three topics: multicast routing, congestion control and modelisation for simulation and emulation.


Opérations de recherche


Multicast Routing

Participating Team Members : J.-J. Pansiot, D. Grad, V. Lucas, M. Hoerdt, C. Jelger

Multicast routing is a recognized activity of our team since several years [1]. This topic is now mainly aimed at congestion control and scalability of multicast routing, PIM-SM and its variants. In his thesis, M. Hoerdt[2] studied routing state repartition and proposed a new architecture, SSMSDP, allowing to use only source trees (SSM model, which is more robust than shared trees of the ASM model)while providing a dynamic multi-source model at the application layer. This work has been partly done in the framework of the RNRT @irs++ project, and the European project 6net. This architecture has also been proposed at the Ietf. More recently we have been working on the control and protection of the signaling plane of PIM-SM: Receiver join control to manage resources and mitigate Distributed Denial of Service against multicast routing. This is because multicast routing is one of a few internet mechanisms where end user actions trigger signaling inside the network. AS a result of this work (in collaboration with B. Hilt and M. Hoerdt) we have proposed a feedback channel for PIM-SM allowing to control useless multicast trees and DDoS attacks. In a work common with our mobility area, C. Jelger [3] and T. Noël have studied multicast communication with mobiles, particularly the difficult case of mobile multicast sources and tree reconfiguration.

Congestion Control and Load Sharing

Participating Team Members : J.-J. Pansiot, S. Cateloin, D. Grad, P. Mérindol, V. Lucas

This work has started more recently with S. Cateloin recruitment. We study (P. Mérindol Ph.D. thesis under the supervision of J.J. Pansiot and S. Cateloin) unicast load sharing among several paths towards the same destination. This requires constructing sufficiently many paths, not necessarily of equal cost. Moreover in a hop by hop routing model, loop avoidance is a hard problem. We have extended Dijkstra algorithm to find multiple paths and we have defined a routing mechanism taking the incoming interface into account and producing a larger set of lop free routes. The objective is to use multipath routing both for protection: locally switch traffic to a backup link in case of fault, and load sharing: locally and dynamically distribute flows on several paths. In his thesis V. Lucas(under the supervision J.J. Pansiot and D. Grad) is working on congestion control mechanisms for very large multicast groups, that is without receivers feedback to the source but using hierarchical layered coding. After some experimentations on a European platform we have discovered some problems with existing propositions such as webrc, and we are studying a new method based on a sliding window mechanism.

Network MOdels for Simulation and Emulation

Participating Team Members : J.-J. Pansiot, M. Hoerdt, D. Magoni, S. Cateloin, P. Mérindol


Our team has quite a long standing activity in Internet cartography since the study of Pansiot and Grad on routes and multicast trees in the Internet(ACM CCR Vol 28 N 1 1998)[4]. Network models have gained a big importance in our research community since many propositions are evaluated using simulation or emulation. In this context, unrealistic network models, for example topology models for routing, cannot give trustworthy results. We have continued studies on Internet topology including a cartography of the IPv6 enabled Internet with traceroute based techniques. Moire recently a study of the Mbone has been achieved using new tools, yielding more precise results on the local topology and its dynamics, but limited to multicast routers[5]. Beyond the topology itself, we are also interested by other parameters useful for different types of evaluation (delay, bandwidth, etraffic engineering metrics, traffic matrices, ...)